

A Case for Quality Assurance in
Financial Technology Testing

May 23, 2014

Quality assurance testing in a project's early stages is sometimes viewed as an

unnecessary cost, but a proper strategy and collaboration can still save money

and reputation.

In his article, Closing the Quality Gap: Firms Look To Short-Term Corrective Testing

Strategies, Stephen O’Reilly makes a case that, while financial services firms incur

significant cost and effort in fixing software defects, they are largely under-investing in

testing software before it is put in production. He rightly points out that the cost (both

monetary and operational impact) of addressing production bugs is a lot higher than

fixing the same issues earlier, yet that is not convincing firms to try addressing those

issues upfront. This argument is valid across industries, and it is widely accepted that

the cost/impact of software bugs grows exponentially as software products grow from

early stages of development to live operation.

Stephen provided quite interesting and trustworthy statistics about willingness to

invest in quality assurance (QA), but the question I would like to address is: “Why

don’t firms do more testing upfront when it is obviously cheaper and less risky?”

There are a few answers that go deeper than the straightforward cost/benefit

analysis:

 First, testing on its own is no guarantee of a bug-free product. Anyone making a claim

to the contrary is misleading the customer. The argument is not whether to spend a

thousand dollars so you don’t lose a million later, but rather to spend a thousand

dollars so you are less likely to lose a million later. This sort of risk assessment is a

very natural way of thinking for financial firms.

 Decision makers often cannot accurately evaluate the quality of the testing process.

By its very definition, testing is less visible in terms of tangible results.

 For appropriate testing you need QA engineers with deep understanding of business

process and use cases, maybe even deeper knowledge than a development

team. This is a very rare skill set on the labor market.

 Testing naturally extends time to market. Even if funds are available, the cost of

waiting for the product to hit the market may overweigh any potential risks.

So how does one address these issues?

http://www.wallstreetandtech.com/technology-risk-management/closing-the-quality-gap-firms-look-to-sh/240168038
http://www.wallstreetandtech.com/technology-risk-management/closing-the-quality-gap-firms-look-to-sh/240168038

First, while testing indeed is no guarantee of a bug-free product, a well organized

testing process dramatically improves defect localization and fixing process. For a

mission-critical system, downtime means money, and a well designed test framework

will mean shorter downtime and faster recovery.

The very process of testing focuses one’s attention on the blind spots, which are

notoriously difficult to predict defects in. This means we can anticipate potential issues

better. Whether it is scalability issues or cross-browser support -- depending on how

well-tested certain product areas are, any potential issues will be less surprising or

dramatic. On the other hand, poor testing or under-testing can be even worse than no

testing at all, as it can give you illusion of safety and confidence, while your product

still may have a lot of blind spots.

While testing quality is indeed harder to witness/evaluate than product functionality, it

should not be underestimated. Professional, well organized QA processes, combined

with modern testing and reporting technologies, provide much better visibility now

than in years past. Some of the core parameters we track in our QA efforts are

functionality testing coverage, code test coverage, and configuration test coverage.

Combined with reasonable acceptance criteria, these metrics enhance the team’s

understanding of the system and efficiency of the development and testing

processes.

It is very hard to find QA engineers with deep knowledge of the financial industry, but

there still can be some possible solutions. First, you can extend the QA team with a

dedicated business analyst. These professions have a lot in common, so such

augmentation would be very natural. Next you can organize some industry-oriented

courses for quick immersion in industry-specific topics. In my experience, this

approach works well, taking into account that one of the key features of a qualified QA

engineer is a short learning curve. The best results will be achieved if these two

approaches are combined.

Finally, in order to mitigate time-to-market risk, one has to get in the habit of getting

QA involved as early as possible in the system lifecycle. Test plans, cases,

environment, and automation framework are but a few things that can and should be

done often and early. If included from the start, QA adds only about 10% of time to the

development timeframe, instead of 20 to 25% that is popularly thought to be

inevitable.

Testing can save you money and reputation, but it is not solely about increasing the

budget on QA in the early stages. You need to have the right process and the right

people at the right time. And even more importantly, you need to make the right

decisions based on information provided by testing.

