@ DIGITALISATION
ow

To endure or to modernise?

Feb 6th, 2018
In Digtital Business,
The dilemma of a legacy system. By Sergey Bludov, Senior Vice President of

Media and Entertainment Practice at DataArt.

DataArt is engaged in industries where technological advances have made the burdens of
legacy systems painfully acute. Over the years, our teams have been involved in
modernizing legacy system architectures and we are happy to share some answers to
common questions.

What is a legacy system?

English dictionaries define the word “legacy” as something left over or handed down by a
predecessor. In computing, the concept usually denotes or relates to software or hardware
that has been superseded but is difficult to replace because it is in use. In a technologist’s
everyday routine, what people mean by “legacy system” or “legacy code” may vary, but it is
rarely a compliment.

Common attributes of a “legacy system” include:

Lack of comprehensive technical documentation describing how the system is designed,
what are the core concepts, etc. Often the original developer(s) of such systems are no
longer working on the system and such technical knowledge is essentially lost.

Brittle codebase, where changes in one part of a system may cause problems in
seemingly unrelated areas; such systems are typically extremely hard to extend and
maintain.

Obsolete technology stack or development methodology.

Some industry experts, such as Michael Feathers - the author of “Working Effectively with
Legacy Code”, go as far as to say that a “legacy system” is any system without sufficient
automated test coverage. So, according to this particular definition, even a brand-new
system may be considered a legacy system if it was developed without the use of proper
development methodologies.

Which industries suffer the most from legacy problems?

It's hard to say that any particular industry suffers more or less than others. Any long-
standing business will ultimately face the dilemma — to keep and maintain its systems or to
modernize. And the longer the solution is postponed, the more costly and painful it
becomes. Legacy code is a natural consequence of continuously evolving technology.
Therefore, consistent, on-going modernization must become a core strategy of any
business that wants to stay relevant in the long term.

The areas where legacy issues are perhaps most noticeable and cause the most pain are
the ones most affected by the digital revolution. The music and publishing industries
certainly belong to this category. For example, missing metadata, old formats incompatible



with modern systems, or a lack of standardization are notorious, and they are in part
caused by the continued use of legacy systems.

When does the legacy system actually become a problem?

The legacy code is not a problem in itself, as it may simply be an evolutionary stage that the
system will pass. The IT community has been dealing with the necessity of supporting
legacy code for years and it's a part of routine responsibilities of many engineers. Legacy
code does, however, hinder progress and slow down innovation.

While support can be cumbersome, a legacy system only becomes a real problem when a
company has to extend its features and functionality, or when trying to integrate it with new
infrastructure or some other modern software.

Legacy systems are typically very hard to change or extend: it takes significant
development and QA effort to implement and test the required changes, increasing the total
cost of a new release. A fast-paced release schedule and shorter user feedback loop are
proven success factors for end-user satisfaction, but are difficult or economically infeasible
to achieve with a legacy system.

A brittle codebase also results in low quality releases and a fairly large number of major
bugs discovered after a release is delivered to consumers. Such issues are much more
expensive to fix, than if found at earlier stages of the product lifecycle.

How to solve my legacy system issues?
There are 3 major ways to approach the “legacy system” problem:
To Refactor

The legacy system is gradually restructured to be more maintainable. When a new change
is expected, a timeframe is planned to refactor the affected parts of the system, before new
code is written. The work starts with “characterization” - automated tests that capture the
existing behavior of the system, before modifications are made to ensure that the changes
will not harm the existing processes.

To Rewrite
A completely new system is built from the ground up with or without a plan to eventually
migrate all existing users of the legacy system to the new one.

To Retire

The active development of new features ceases and the legacy system is switched to a
“‘maintenance only” mode, when only critical bug fixes are released.

There is no single solution that fits all and a particular approach can be applied depending
on existing business needs.

Often “rewriting” the system may seem easier than refactoring, but there are strong
arguments against it. A complete blank slate rewrite of any non-trivial system is a risky
endeavor with a long and not-well-predictable time frame to complete. Few organizations
can afford to discontinue all activities on an existing system due to the changing business
environment, pressure from competitors, and consumer demands. So both the legacy and
the new systems will have to be developed and maintained simultaneously, with the legacy
system having an “edge” over the new system, in terms of implemented and tested
features. More importantly, without a company-wide shift in IT strategy, there is no
guarantee that a new system will work any better or be of higher quality than the legacy
system.



Generally, the “refactoring” approach should be the first option to consider. Ultimately, it's
up to the business stakeholders, with the help of advisors and development team, to
evaluate the situation, assess the risks and decide on the best course of action.

What’s the best way to handle the change — in-house or by a third party vendor?
The answer requires a thorough consideration of numerous factors.

It makes sense to keep the job in-house if the company has an adequately-sized IT
department and its engineers are already familiar with the workflow and features that need
an upgrade. However, the engineers who created the system and are most familiar with its
architecture may not be available; or the in-house team may not be sufficiently staffed for
the scope of the project; or the engineers may not be motivated to work with the legacy
code; or an outside team may be more cost-effective. The list of factors is long.

The IT market is large and there are many companies that can help with development and
support legacy code. If you should decide on a vendor collaboration, keep in mind that
working with an in-house team and third-party vendors does not have to be mutually
exclusive. In fact, many companies choose to augment their teams with outside experts and
such collaborations can prove beneficial in many cases, such as dealing with legacy
systems, keeping pace with business expansions, and more.

Original article can be found here: https://digitalisationworld.com/article/53302/



