
Docker, microservices, reactive programming and all that Jazz
in Java world

Denis Tsyplakov
Solution Architect, DataArt

Why I decided to speak about this topic

As a Solution Architect I mostly doing the following types of work:

• Help people to fix broken application architecture. Usually it is about:

• Performance

• Scalability

• Extensibility

• Endless bug fixing

• Total cost of ownership

• Help people to design application in a way that will allow them to avoid issues from the list above.

There are common anti-patterns, some of them I want to discuss today.

Docker

• Does isolation of an application from other

applications/runtimes and libraries running

/ installed on host OS.

• Allows you to package code, libraries,

settings, into one container.

• Docker compose allows you to run system

that consists of several services in one

command.

Looks great!

Should we use Docker with Java?

Web Application

Cache Service

MQ Service
DB

Dockerized web application deployed on AWS EC2

• Looks like we already have several levels of isolation

Physical Machine

RAM

Disk IO

Network

Physical machine OS

AWS virtualization

AWS virtualization

Docker container

Java virtual machine

Servlet container

Application code

Some numbers from IBM research

• Disk IO, CPU, RAM access –

show speed almost identical to

native.

• Also Docker increases

• HDD space usage

• Memory usage

• Startup time.

• In same cases it is not a big deal,

but in some cases it is important.

When do we need Docker with Java stack?

• When we need different JRE versions (it is painful, but it happens) or similar case when we need to package JRE

together with the code.

• When we have external binary dependencies (JNI, etc).

• When we need to compose our host system from several different services (processes) created with different tech

stack (nginx proxies 1 Node.JS application + Go library + Java application + Python ML service).

• When we use Kubernetes (or some other Docker based orchestration system).

• In simple cases packaging with Spring Boot is enough.

OK, if our system includes several dependent
services we need Kubernetes to manage it

In general this is correct,

… but in case if you have moderate

amount of services / instances, simpler

tool can do the job:

• Puppet

• Chef

• CFEngine

• SaltStack

My favorite tool – Ansible:

• Agent-less (uses SSH)

• Minimalistic

• Simple

Microservices

Advantages of microservices:

Lower resource consumption and better

flexibility while scaling

Fault isolation

Flexible tech stack

API Versioning

Dev process isolation for big teams, clean

API contracts between teams

What we have in Java

In Java we have:

• Class API contracts

• Implementation isolation

• Dependency injection (service discovery)

• Modular projects (team scope isolation,

deployment profiles)

Class A

Responsive

Class B

@Component @Component

@Component

@Autowired

@Autowired

When do we need microservices: Flexible versioning

Service B v1Service B v1

Service A v2Service A v1Service A v1 Service A v2

Load balancer

Service B v1 Service B v1

Service C v1

New
generation
of services

When do we need microservices: …

• Unbalanced resource usage

• Extreme scaling of some narrow functional area

• Usage of non Java tech for some specific area

• Fault isolation (it is always better to avoid faults,

but it is not always possible)

• High management complexity requires area

isolation inside service

In more generic case monolith application can easily do the job and can be split into several services later.

Monolith app

Functional
area A

Functional
area B

Functional
area C

Functional
area D

Functional
area E

Data A Data B Data C Data D Data E

High RAM
usage

High CPU
usage

Reactive approach

Reactive Systems is a new, positive

trend in modern the IT.

Should every Java application be

based on Akka use Play Framework

for web or at least use Netty?

Reactive Programming != Reactive System

You can do this:

manager.getCampaignById(id)

.flatMap(campaign ->

manager.getCartsForCampaign(campaign)

.flatMap(list -> {

Single<List<Product>> products = manager.getProducts(campaign);

Single<List<UserCommand>> carts = manager.getCarts(campaign);

return products.zipWith(carts,

(p, c) -> new CampaignModel(campaign, p, c));})

.flatMap(model -> template

.rxRender(rc, "templates/fruits/campaign.thl.html")

.map(Buffer::toString)))

.subscribe(content -> rc.response().end(content),

err -> {

log.error("Unable to render campaign view", err);

getAllCampaigns(rc); });

And you still have !Reactive application

Reactive system -> Reactive architecture

Reactive architecture does not necessarily means

reactive programming

When you need to use reactive frameworks?

• When you need to handle more requests with less threads.

• When do you need this?

• When you can save CPU time on thread context switch.

Mostly in case when you have many requests and serving each request takes just a few CPU ticks

AND this requests do not use blocking services.

When reactive framework helps

YES

NO

Request
Reactive

freamework
You code

Reactive IO
library

Resource

Request
Reactive

freamework
You code

Blocking IO
library

Resource

OK. Then how to design reactive system?

• Start with business requirements that allows to do reactive design.

• Then design your data in a reactive-friendly way.

• Use asynchronous API where this is applicable.

• Shard data.

• Design fine-grained components with clean atomic functionality (component is not

necessarily microservice, it can be a class, a function or even a method).

• Use queues and messages where it is applicable.

Questions?

Thank you!

