
PMI Virtual Library
© 2010 Dmitry Stillermann

In Search of the Perfect Project
Management Tool

The market for project management tools, specifically
those targeted at the software development industry,
is in a very peculiar state nowadays. Every available

solution is either lacking some
rather critical features, or is
cumbersome to use, or both.
Basically this means that any
newcomer that addresses all of
the shortcomings of the existing
products can easily grab a huge
market share from
the competitors.

This situation is similar to
how the market of integrated
development environments
(IDEs) looked during the late
1990s, just before the arrival of IntelliJ IDEA (http://www.
jetbrains.com/idea/). When the first version of JetBrains’ IDE
came out, it instantly became a highly disruptive innovation
that redefined both the market and the industry’s perception
of an IDE as a product class. The sheer scale of this event
was so great that Martin Fowler, a renowned industry guru,
proclaimed that the world had entered “the post-IntelliJ era”
(http://martinfowler.com/bliki/PostIntelliJ.html).

So, what exactly is wrong with existing software project
management tools? As it happens, there is actually no single
answer to this question, because the market is so diverse.

Gantt Charts: Your Dad’s Project Management
On the high-ticket side of the spectrum, there are numerous
“enterprise-y” product suites, usually marketed under the
umbrella term “Application Life Cycle Management” (ALM)
or “Enterprise ALM.” These usually support the full range of

By Dmitry Stillermann

project-related functions and activities, including product and
requirements management, traditional project management,
QA management, and defect tracking, configuration

management, budgeting, and
procurement. The typical problem
of such suites is that their vendors
have usually assembled them from
several parts that were originally
unrelated, often through a string
of acquisitions, and these parts
are not always integrated well
enough. Also, because the “feature
completeness” is a big sales
driver for this kind of product,
the vendors too often end up
overloading the products with

features and not paying attention to usability. I believe that
any person who uses a typical enterprise ALM product on an
everyday basis ultimately becomes highly dissatisfied.

Another problem with high-end enterprise suites is
that they are rooted in a more traditional school of project
management. Until now, formal project management training
has been generally organized in accordance with A Guide to the
Project Management Body of Knowledge (PMBOK® Guide), an
international standard (Project Management Institute, 2008).
In the world of project management tools, the embodiment
of this style is the ubiquitous Microsoft Project. The problem
here is that this approach is too generic and industry-neutral,
and the realities of any specific industry (whether information
technology, construction, or pharmaceutical) don’t always
perfectly fit the ideal model of the PMBOK® Guide. MS
project is organized around the representation of project plan
as the Gantt chart—a hierarchical breakdown of tasks and

 There are numerous

‘enterprise-y’ product suites, usually

marketed under the umbrella term

‘Application Life Cycle Management’

(ALM) or ‘Enterprise ALM’. ”

PMI Virtual Library | www.PMI.org | © 2010 Dmitry Stillermann
2

activities, usually with strict dependencies and fixed timing
and cost for each task. However, Gantt charts capture real-
world software development very imperfectly. Compared with
a neat Gantt chart, software development at the “micro” level
is a mess—it is nonhierarchical, dependencies are often weak
or nonexistent, tasks can go on in parallel or be interrupted,
timing is never accurate, and resource allocation may often
change the whole plan (for instance, the famous Brooks’ law
that states that adding people to a late software project makes
it later doesn’t actually often apply to construction).

All this being said, there is no escaping the burden
of detailed long-term planning if you’re dealing with the
stringent nature of fixed-price contracts. The traditional,
top-down approach is inevitable for a complex orchestration
of projects that bring together diverse teams from multiple
organizations, governing their relationships by means
of strictly defined contractual obligations. The overall
performance of such a framework may be less than stellar,
but in this case predictability (real or perceived) is often more
important than speed, adaptability or, often enough, even
quality. Thus, dependencies and milestones become the key
focus of managers’ attention and all kinds of “crystal balls” are
employed for the purpose of predicting the state of things a
year in advance. Gantt charts naturally support this approach
exactly because they capture the world in terms of hard
dependencies, predefined timing and costs.

Backlogs: Lightweight and Cool
It should come as no surprise that the most convenient,
intuitive, and usable tools have grown out of the practices
adopted by the people who are “out in the trenches.” For
many years, the first step for a self-organizing software team
towards a centralized, well-managed project bookkeeping
has been using a bug tracker of choice as their project
management tool. Even before the agile became fashionable,
software teams have felt that a bug tracker’s worldview is
actually a very good representation of a small software project.
A bug tracker is essentially a to-do list that can be prioritized,
estimated, assigned to developers for handling, and used for
all kinds of monitoring and reporting purposes via clever
configuration and querying. Really good bug trackers allow
the project managers to fine-tune the bug life cycle to better
model the particular way to do business that has evolved
within a specific team or company. So, it is only natural to
begin tracking not only bugs, but also regular parts of the
project scope. This trend actually led some of the bug tracking
software vendors to start marketing their products as “project

management” solutions. One well-known example is FogBugz
from Joel Spolsky’s company FogCreek (http://fogcreek.com/
FogBugz/) that was born as a bug tracking system and then
was rebranded as a “complete project management system
designed to help software teams communicate.” FogCreek,
however, has some real content behind this claim: They not
only changed the product’s positioning, they also added
some very smart features, such as Evidence-Based Scheduling
(EBS), which puts FogBugz together with some of the
best-of-breed members of the new project management
tool generation.

The rise of the agile lifestyle and the widespread adoption
of agile or semi-agile processes and practices have also had
a great impact on the project management tool market.
Probably the best tools on the market today are firmly rooted
in the agile model. The best example is most likely Rally
(http://www.rallydev.com/), which provides superb agile
project management capabilities and at the same time offers
a free-of-charge edition for small teams (up to 10 users).
Other well-known players are CollabNet TeamForge (http://
www.open.collab.net/products/sfee/) and XPlanner (http://
www.xplanner.org/), an open-source tool. The best thing
about these tools is that they provide the best fit for small-to-
medium projects (up to a few tens of people) and also use the
best practices that agile methodologies made popular. They
are usually highly usable and sufficiently decrease the amount
of time the project manager and the team have to spend on
mundane bookkeeping tasks. The learning curve is probably
more or less the same as for Gantt-centric tools, but once it
has been learned it, it is very natural to follow the underlying
approach.

So then, what’s the downside of sophisticated bug
trackers and agile-based project management tools?
Unfortunately, it’s that they don’t capture the full complexity
of the real world. Being perfectly suited to small-to-medium
teams and relatively simply organized product life cycles,
these tools often fail the project managers when they need
to work in a broader organizational context or with large
cross-organizational teams governed by intricate contractual
frameworks, or with more complex product design workflows.
The agile tools are great at the “micro” level, but they are not
always adequate at the “macro” level, where there are hard
deadlines and dependencies, elaborately defined acceptance
criteria, complex sign-off workflows, or even so dull a task
as cost management done properly. Once we add to the
picture the need to integrate with product management
and marketing, where the concept of “feature” is often very

PMI Virtual Library | www.PMI.org | © 2010 Dmitry Stillermann
3

different from the “user story” or “work package” at the
development level, we begin dealing with complexities that
the agile project management tools simply cannot support.
In this case, project managers resort to tried and trusted MS
Excel, MS Project, and all kinds of home-grown tools that
flourish in each mature organization.

It is also well known that a pure agile model is not
very well compatible with a fixed-price, fixed-scope type of
contract, which makes project managers’ lives even harder—
they actually have to do their planning and monitoring work
in two, three, or more environments, depending on whether
they look at the project at the “micro” or “macro” level, and
on which particular aspect of the project they are working
at the moment. This not only hinders productivity and is
very inconvenient, it is also very error-prone and potentially
dangerous for the projects and companies that run them.

How To Deal With It All
The world of project management tools is obviously far
from perfect. Where does this leave project management
practitioners until a revolutionary new tool redefines the area?
And what advice can be given to them?

The recommendations below may sound a bit mundane
and boring, but they have been learned and proved by years
and years of several managers’ real experience.

Be aware of your project’s context and priorities.•	
Establish a clear understanding of what is truly important
for your customers, your company, and your team, what
commitments have been made, and what everyone’s
expectations are. It makes little sense to focus on technical
and functional excellence if time to market or overall
budget is strictly constrained. Conversely, an overhead of
detailed planning is hardly justified if a rapidly shifting
business demand must be continuously satisfied. Identify
the variables that need to be optimized and base your
thinking on them.
Decide what data you need to track.•	 A proper
information system design process should take into
account what kinds of data the users will need and how
they will use them. As a project manager, you design your
project’s information system by deciding what data you
will track and what questions you’re going to ask about
the data. This is clearly related to project priorities: You
may need very different data to be able to say when the
project is going to finish, depending on your acceptance
criteria. Status reporting requirements, either stipulated in
a contract or in a project communication plan, or defined

in your corporate policies, are another big source of data
tracking requirements.
Select the right mix of tools for the job.•	 Based on your
context and needs, make a conscious selection of tools
that will support you, the team, and the stakeholders.
Don’t instinctively fire up your favorite tool just because
it worked well on your previous project, or because
everyone around you uses it. Don’t constrain yourself
to a single tool or even a single “toolbox”—it may be
more optimal to perform some things using only those
tools best suited for them. Have every tool in place by
the moment you need start collecting and tracking the
respective type of data.
Designate one tool as primary.•	 You need one definitive
source of project information, referenced by all other
tools and systems. Otherwise, you will either lose
track, or you will need to regularly spend extra effort
on synchronization, or both. It is possible to use two
independent systems for a limited period of time, but
you certainly want to ultimately move to a single source
situation. Often, if your customer strongly insists on
using their own project management system, it is better
to organize your process around it instead of setting
up a complex synchronization with your favorite tool,
even if your tool is clearly superior. Any centralized
registries, such as issue tracking databases or agile project
management tools, are often ideal candidates for the
primary project data storage: Besides allowing you to
have all of your project scope in one place, they give you
a convenient identification scheme for all of your tasks,
which then can be referred to by number or ID.
Beware of unnecessary overhead.•	 Your job is challenging
enough—don’t add on an additional paperwork burden,
especially if no one is going to need it. Confine yourself
to what actually helps you run the project or has been
demanded by the contract. Usually, one of the most
time-consuming activities is preparing detailed status
reports according to the peculiar needs of many powerful
stakeholders. Try to do as much as possible using the
built-in reporting features of your primary project
management tool. What can’t be supported directly, is
almost always possible to do using raw data extraction
and some Excel magic; if you’re not an Excel/VBA guru
yet, a little self-education in this area would be your best
investment. One special area where most popular tools
are relatively weak is project metrics’ trends over time. In
this case, sometimes the best solution is to preserve the

PMI Virtual Library | www.PMI.org | © 2010 Dmitry Stillermann
4

time series in a separate Excel spreadsheet and establish a
daily routine to update them.
Watch the changes in the project context and react •	
accordingly. Especially interesting to you as a project
manager are changes that
affect your process and
your information needs.
These often lead to changes
in data tracking routines
and may require new
tools being introduced or
the tools already in place
being applied in new ways.
One very typical example
is moving from active
development into a user
acceptance testing and
stabilization phase; despite their similarities, bugs and user
stories are treated and measured differently. The progress in
the development phase is usually measured by techniques
like Earned Value Management or burndown charts. When
you move into UAT and stabilization (if you’re in that
kind of project), everyone starts to be concerned about bug
counts and the corresponding trends.

Conclusion
The future of software project management tools, it seems,
is going to be defined by a future product that will bring the
same level of usability and conceptual fitness to the “macro”
level of software project that the agile project management

tools have brought to the
“micro” level. The software
project managers of the world
are waiting for their own IntelliJ
IDEA, but, unfortunately, none
can be seen on the horizon.
Meanwhile, however, project
managers can determine the
best mix of tools and processes
for their particular projects by
staying alert and aware of what
the project context requires.

About the Author
Dmitry Stillermann is vice president of Enterprise Project
Management at DataArt Solutions, Inc. He supervises
application development projects spanning multiple
organizations, functions, locations and time zones, and, as a
member of PMO, promotes best practices for project delivery.

 Project managers can

determine the best mix of tools and

processes for their particular projects

by staying alert and aware of what the

project context requires. ”

