

Mastering Windows Azure Application Development

Dmitry Yakovlev, Senior Vice President, DataArt

Cloud Landscape
Before mastering cloud application development is discussed, it's important to go over the existing cloud
landscape. There are four major cloud computing platforms available on the market today: Amazon EC2, Windows
Azure, Google App Engine and Force.com. Each of these platforms is a more or less successful attempt to

commercialize internally-crafted virtualization technology. While
Amazon and Microsoft succeeded in building general-purpose cloud
environment, Google and SalesForce remain niche players due
rudiments of internally-grown technology and use of programming
languages like Python and APEX.
In the years to come, cloud computing will take a substantial piece of
the market from traditional deployment models. This implies growing
demand for applications that can operate in a cloud environment, and
for software engineers skilled in cloud computing technologies. Since
commercial software development is driven by enterprises which
prefer mainstream technologies, Amazon EC2 and Windows Azure are
likely to be the two platforms of choice for software developers.
Considering the fact that both platforms can host applications written
in different programming languages, one should denote Java and .NET
as primary development platforms for Amazon EC2 and Windows

Azure respectively.
In this article we will focus on mastering application development for Windows Azure which is a valuable
investment for a .NET programmer.
Required Knowledge
Let's discuss specific skills required for Windows Azure application development, things to start with and areas to
be studied.
Mandatory Skills
A programmer looking to dive into Windows Azure application development should have a working knowledge of
Microsoft .NET technologies. Particular skills are:

 .NET Framework 4.0
 ADO.NET Data Services
 LINQ
 Windows Communication Foundation (WCF)
 ASP.NET MVC 3.0
 Multi-threading

Developers should be familiar with RDMS concepts and MS SQL 2008. Additionally, a solid understanding of HTTP
protocol and REST concept is very desirable as it helps to assess the implications of network topology (load
balancers, proxy servers, CDNs) on RESTful web services. Knowledge of Service Oriented Architecture (SOA) design
principles is essential as cloud applications strongly rely on services.
Cloud Concepts

1. The first logical step is to become familiar with cloud-related concepts and to adopt the principles of
cloud application development. There is a lot of information on the Web about cloud computing. From a
software developer's perspective, cloud can be treated as a way to get on-demand access to two types of
scalable resources: compute (CPU) and storage which are available via services provided by the cloud
platform.

http://www.hpcinthecloud.com/hpccloud/2012-01-10/mastering_windows_azure_application_development.html?featured=top

2. The second step is to learn how Windows Azure hosting environment works in detail. There is a good
presentation at Channel9 describing platform infrastructure and application lifecycle. As result of this
step, a developer should recognize and adopt the following ideas:

o Cloud application runs in a bare Windows 2008 operating system
Don't assume that Windows Azure hosting environment has any preinstalled software; it's a bare
operating system. Any functionality, usually supported by preinstalled software, should be
instead implemented within the application hosted on Windows Azure.

o The application instance can be recycled by the platform at any point of time
Everything stored on a local disk drive memory will be deleted once the instance is recycled. To
preserve the data and make it available to other instances, use Windows Azure Storage services.

o Cloud application runs in a concurrent environment
Services provided by Windows Azure platform are designed to operate in concurrent
environments with the use of "try and correct" pattern. The application should follow this
pattern and properly handle cases in which access to a service is declined by repeating the
operation later. Another aspect to keep in mind in that a web application under Windows Azure
always runs behind load balancer.

Getting Started with Windows Azure Development
I would recommend beginning by reading a book by Tejawsi Redkar "Windows Azure Platform" (second edition)
which gives a good introduction to Windows Azure for beginners.
Setting Up the Development Environment
First, one has to setup the development environment. Windows Azure development environment requires
Windows Vista SP2, Windows 7 or Windows 2008 operating system. The following software should be installed:

 Visual Studio 2010 Professional or above
 Windows Azure Tools & SDK (latest version is available at

http://www.microsoft.com/windowsazure/sdk/)
 Windows Azure Storage Explorer – a convenient GUI tool to explore Azure storage (available at

http://azurestorageexplorer.codeplex.com/)
 Code samples (http://code.msdn.microsoft.com/windowsazure)

At this stage, one should be able to open Visual Studio and create a blank Windows Azure solution. As an exercise,
I would suggest implementing a simple online photo storage application.
Web, Worker and VM Roles
Learn three types of application roles supported by Windows Azure:

 Web role
 Worker role
 Virtual Machine (VM) role

The first two roles are analogs of traditional web application and Windows services. VM role is somewhat special
and shouldn't be used unless a customized version of a guest operating system is required. Using VM roles puts the
burden of OS support on the system administrator.
Pay attention when logging in to the Windows Azure application. Remember that debugging a cloud application is
rather hard, if at all possible. Therefore, the application should emit and store enough debugging information to
allow for discovering and tracing problems in the code.
Storage Services
There are three types of storage supported by Windows Azure platform:

 Blob storage
 Table storage
 Queue storage

The services are exposed via REST API and available outside of Windows Azure hosting environment as well, so one
can create an application for a mobile device which interacts directly with the storage. Windows Azure SDK comes
with a managed library providing access to storage services via an object model.
There are several important things to know when working with Azure storage:

 Storage objects are addressed by URL, so certain restrictions are applied to the object name.
 There are three types of blobs: single blob, block blob and page blob. Each of them has a minimum and a

maximum size.
 Table storage is not a relational database. There are no relationships, indexes and constraints. It's more

like an Excel spreadsheet highly scalable in the number of rows.
 A table always includes two properties (PartitionKey and RowKey) forming a primary key, the total length

of the key can't exceed 1024 symbols. Only 256 symbols of the primary key can be used to address the
record.

http://channel9.msdn.com/blogs/pdc2008/es19
http://www.microsoft.com/windowsazure/sdk/
http://azurestorageexplorer.codeplex.com/
http://code.msdn.microsoft.com/windowsazure

 Table always includes Timestamp field used to resolve conflicts
 Table has limits of 1M per entity (row) and 64K per property (field)
 Sorting is not supported by Table storage, so it's always done on the client side.
 Maximum number of records returned by a query against Table is limited to 1,000 entities per request. A

continuation token should be used to retrieve subsequent data.
Windows Azure storage services should be studied in detail, with particular attention paid to addressing a scheme,
size limits, and operation restrictions. This knowledge will prevent you from making wrong decisions in the design
of your cloud application.
Among other things worth taking a look at, I would recommend a comprehensive study of Azure storage
performance http://azurescope.cloudapp.net/BenchmarkTestCases/ which gives a good idea of storage
throughput under different scenarios.
Azure SQL
Azure SQL is a cloud version of regular MS SQL database. It looks like a complete replacement of regular MS SQL
database with minor restrictions on T-SQL syntax. However, the fundamental restriction of Azure SQL is size limit
of 50Gb per database, so it's not entirely scalable. Recognizing this fact is important for application architecture.
You should store in Azure SQL only data which shouldn't grow substantially, e.g., a list of user accounts. Quite
often developers try to employ Azure SQL to store things like pictures, documents, logs, etc., so the storage space
gets exhausted quite soon and the system fails.
Azure SQL databases are available outside of Windows Azure hosting environment. It is possible to setup access
restrictions based on an IP address.
AppFabric
Windows Azure AppFabric is a set of middleware services designed to facilitate development of enterprise
applications on top of Windows Azure. Currently, the SDK and services are available as a CTP release. Learning
AppFabric SDK is not required to develop Windows Azure applications, however one service highly demanded by
developers to take note of: Cache service which provides fast access to in-memory data storage. Here I refer to the
fact that Windows Azure doesn't provide a way to store web session data, so developers have to implement a
custom version session provider relying on Windows Azure storage. The new Cache service addresses this issue.
There is a good up-to-date reading about AppFabric by Alan Smith available for free at
http://www.cloudcasts.net/devguide/
Deployment
You have arrived at the stage when your first Windows Azure application is implemented and tested in the
development environment. To deploy the application to the Windows Azure environment, you need to sign up for
the service. There is a free trial available for 90 days (valid credit card is required).
Once the account is set, you can create a storage account and a hosted service. Each hosted service supports two
environments: staging and production. Deploying the application is quite simple and requires uploading a package
and a configuration file. The application in the staging environment is available under a private URL for testing
purposes. Once the staging environment is tested, it can be switched to production in a single click. Now you have
your Windows Azure application running.

http://azurescope.cloudapp.net/BenchmarkTestCases/
http://www.cloudcasts.net/devguide/

